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Although artificial neural networks have prevailed as the workhorses of modern ma-
chine learning approaches, the mathematical theory behind them might be considered
still lacking in some areas [5]. To comply with this demand, we evoke frame theory,
an active field in functional analysis that has successfully improved the understanding
of many engineering problems by connecting branches of pure and applied mathematics
with the applied sciences [3]. It is a linear theory, while a layer of a neural network is a
composition of an (affine) linear function and a non-linearity. To study such a layer with
frame theoretic tools, we propose to

incorporate non-linearities into frame theory

for enabling a better theoretical understanding of neural networks.

Specific questions include:

- Non-linear Frames: Let σ : C → C be a non-linear function. For (ψk)k∈N ⊂ H in
some Hilbert space, the standard frame inequalities are generalized by

A ∥f∥2H ≤
∑
k∈N

|σ (⟨f, ψk⟩)|2 ≤ B ∥f∥2H . (1)

When does this hold and how do A and B depend on σ? Can we derive an analogous
machinery as for standard - linear - frames?

- Generalized Phase Retrieval: As an important form of signal reconstruction [1], we
aim to understand the relations between σ and (ψk)k∈N, so that the operator

T : f 7→ (σ (⟨f, ψk⟩))k∈N ,

is injective respectively boundedly invertible.

- Non-linear Kernels: Let ρ : H → H′ be a non-linear function mapping from one
Hilbert space into another one - in a machine learning context usually a higher
dimensional one. Define ⟨f, ψk⟩ρ := ⟨ρ (f) , ρ (ψk)⟩H′ and investigate a nonlinear
frame inequality

A ∥f∥2H ≤
∑
k∈N

∣∣∣⟨f, ψk⟩ρ
∣∣∣2 ≤ B ∥f∥2H (2)

and consequences thereof. Can this provide more theory for the “kernel trick” in
support vector machines? Can this be compared to results as in e.g. [2, 4]?

Further questions will arise along the way. The successful applicant will be integrated
into ARI and NuHAG. He/she will closely work with the two PhD advisors and a current
PhD student studying a connected topic.
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