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Lattices

A lattice Λ = (V ,E ) is a mathematical model of a discrete space.
It consists of a set V ⊂ Rd of vertices and a set E ⊆ V × V of
edges. If two vertices are connected via an edge, we call them
nearest neighbours.
An important subclass of lattices are periodic lattices. A lattice is
called periodic if the there are vectors v1, . . . , vk such that the
lattice is mapped to itself under any translation of the form∑k

j=1 αjvj where αj ∈ Z for j = 1, . . . , k.



Lattices

Figure: Three examples of periodic lattices. From left to right: the
Euclidean (or square) lattice Z2, the triangular lattice and the hexagonal
lattice.



Lattice paths

A n-step lattice path or lattice walk on a lattice Λ = (V ,E ) from
s ∈ V to x ∈ V is a sequence w = (w0,w1, . . . ,wn) of vertices
such that

1. w0 = s and wn = x

2. (wi ,wi + 1) ∈ E for i = 0, . . . , n − 1



Lattice paths

Alternative definition (in Zd):
An n-step lattice path from s ∈ Zd to x ∈ Zd relative to a step set
S is a sequence w = (w0,w1, . . . ,wn) of points in Zd such that

1. w0 = s and wn = x

2. (wi ,wi + 1) ∈ S for i = 0, . . . , n − 1

Advantage: more compact form.
Note: step set defined globally, same structure at each vertex.
In this talk: step set always finite. Underlying lattice: Z2



Lattice paths

Applications of lattice paths in mathematical models:

I in physics: wetting and melting processes, Brownian motion

I in biology / biochemistry: models for polymers (e.g. DNA)

I birth-death-processes

I in computer sciences: queues, analysis of algorithms

I . . .

Bijections with other mathematical objects:

I trees

I Young tableaux

I triangulations of n-gons

I . . .



Lattice paths

length of a step: its first entry ui
length of a walk/path: sum of the length of its steps,
|w | = u1 + · · ·+ um
size of a walk: number of steps (does not always coincide with
length)
final altitude of a walk: sum of altitudes of its steps (second entry
vi ), i.e., alt(w) = v1 + · · ·+ vm.

A lattice path in Z2 is called directed if all its steps have positive
first coordinate.
A lattice path is in Z2 called simple if all of its steps are of the
form (1, b). These objects are essentially one-dimensional objects
and their size always corresponds to their length.



Lattice paths

Weighted lattice paths: each step is associated with a weight.
weight of a path: product of the weight of its steps.
Often used choices of weights are:

I Combinatorial paths in the standard sense: wj = 1 for all
steps.

I Paths with coloured steps: wj ∈ Z+.

I Probabilistic models:
∑

j wj = 1 and wj ∈ (0, 1].

Step polynomial:

P(t, u) =
∑
s∈S

wst
|s|ualt(s).



Lattice paths

I walk: unconstrained lattice path.

I bridge: lattice path whose endpoint lies on the x-axis.

I meander: lattice path that lies in the quarter-plane
Z≥0 × Z≥0. For directed lattice paths, this is equivalent to
lattice paths that never attain negative altitude.

I excursion: bridge and meander.



Lattice paths

Generating functions for walks, bridges, excursions and meanders
(Banderier, Flajolet, 2002).



Patterns

A pattern p is a fixed path/word

p = [a1, . . . , a`]

where ai ∈ S.
Length of a pattern . . . sum of the lengths of its steps.

Occurrence of a pattern p . . . contiguous sub-string of the path w ,
which coincides with p.
A path w avoids the pattern p . . . no occurrence of p in w .

Example: w = [1, 3, 3, 1,−2, 3, 1] (where i stands for the step
(1, i)) has two occurrences of the pattern p = [3, 1] but avoids the
pattern p̃ = [−2,−2]
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Formal power series, generating functions

Formal power series

A(z) :=
∑
n≥0

anz
n = a0 + a1z + a2z

2 + . . .

Correspondence: sequence ↔ formal power series (generating
functions)

(a0, a1, a2, . . . )↔ a0 + a1z + a2z
2 + . . .

Combinatorial constructions correspond to arithmetic operations

I disjoint union ↔ sum of power series

I Cartesian product ↔ Cauchy product of series

I sequences of objects from class A ↔ geometric series 1
1−A(x)

I . . .



What is the kernel method?

The kernel method is a tool to study generating functions that
satisfy functional equations.

Main idea: bind variables in a way such that one side of the
equation vanishes.



What the kernel method is not

The (combinatorial) kernel method has nothing do do with the
kernel method or kernel trick in statistics or machine learning.



The Beginnings

Exercise:
Consider a word composed of n ’S ’ symbols and n ′X ′ symbols,
where S stands for ’add an element’ to some specific stack and X
stands for ’remove an element’ from the stack. Such a word is
called admissible if it specifies no operations that cannot be
performed – i.e. if the number of X ’s never exceeds the number of
S ’s when read from left to right. Find the number of admissible
words as a function of n.

D.E. Knuth. The art of computer programming. Vol 1:
Fundamental algorithms. Addison-Wesley Publishing Co., 1968.
Exercise 2.2.1.4
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Old Problem – New Solution

”We present here a new method for solving the ballot problem with
the use of double generating functions, since this method lends
itself to the solution of more difficult problems ...” – D. E. Knuth



Old Problem – New Solution

A rephrasing of the problem: Find the number of lattice paths with
(1,1) and (1,-1) steps that never go below the x-axis and end on
the x-axis.

Ways to solve this:

I reflection principle

I first passage decomposition

I ...
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How to do it with the kernel method

1. Enlarge the class of objects. Add catalytic/auxiliary variable.

2. Establish a functional equation. Rewrite it in kernel form.

3. Eliminate one of the unknowns.

4. Extract the generating function.
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Steps 1 and 2: introduce new variable, functional equation

z ... length of the walk
s ... final altitude (this is our new variable!)

Use a step-by-step construction to obtain the functional equation

F (z , s) = 1 + z(s + s)F (z , s)− zsF (z , 0).

Rewrite in kernel form: ”Bulk on the left, initial and boundary on
the right”

(1− z(s + s))︸ ︷︷ ︸
kernel

F (z , s) = 1− zsF (z , 0).

We are interested in F (z , 0) (walks that end on the x-axis).
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Step 3: eliminate unknowns

Kernel equation:

(1− z(s + s))F (z , s) = 1− zsF (z , 0)

Two unknowns: F (z , s) and F (z , 0).

I LHS: contains s-dependent unknowns

I RHS: contains s-independent unknowns

There are two ways to get rid of one of the unknowns:

I Eliminate the s-dependent unknown

I Eliminate the s-independent unknown
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Step 3: eliminate unknowns

Eliminate the s-dependent unknown F (z , s).
Multiply the kernel equation by (−s):

(zs2 − s + z)F (z , s) = zF (z , 0)− s.

We have that

zs2 − s + z = z

(
s − 1−

√
1− 4z2

2z

)(
s − 1−

√
1 + 4z2

2z

)
.

Substitute

s = s0(z) =
1−
√

1− 4z2

2z

in the kernel equation and obtain

0 = zF (z , 0)− s0(z).



Step 4: extract generating function

Thus

F (z , 0) =
s0(z)

z
=

1−
√

1− 4z2

2z2
.

Generating function for walks ending at height 0. Read off
coefficients to obtain solution for n.

More generally

F (z , s) =
s0(z)− s

zs2 − s + z
=

1−
√

1− 4z2 − 2zs

2z(zs2 − s + z)
.



Why not ...?

Why not

s̃0(z) =
1 +
√

1− 4z2

2z
?

Plugging this solution into the kernel equation gives

0 = zF (z , 0)− s̃0(z).

Thus

F (z , 0) =
s̃0(z)

z
=

1 +
√

1− 4z2

2z2
=

1

z2
− 1− z2 − 2z4 − . . .

Not a power series!



Small and large roots

Small roots: roots si (z) which tend to zero as z → 0.
Large roots: roots si (z) which tend to infinity as z → 0.

For the kernel method: use small roots.



Patterns: Prefixes and Suffixes

prefix of length k of a string/pattern . . . contiguous sub-string that
matches the first k letters
Similarly: suffix . . . matches the last k letters.
Presuffix . . . is both prefix and suffix.

Example: Consider

p = [1, 3, 3, 1,−2, 3, 1]

I [1, 3, 3] is a prefix of p (of length 3).

I [−2, 3, 1] is a suffix p.

I [1] is the only presuffix of p.
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Finite automata

A finite automation is a quadruple (Σ,M, s0, δ) where

I Σ is the input alphabet

I M is a finite, nonempty set of states

I s0 ∈M is the initial state

I δ :M× Σ→M is the state transition function (or partial
function, i.e., not every δ(Si , x) is defined).

Sometimes: set F ⊆M of final states also given.

Ways to describe an automation:

I as weighted graph (states are vertices, edge weights are sums
of values of the transition function)

I as adjaceny matrix



Patterns and automata

Example: S = {U,H,D} where U = (1, 1),H = (1, 0) and
D = (1,−1), p = [U,H,U,D] forbidden pattern.
Automation:

I States are proper prefixes of the pattern p
Here: X0 = ε,X1 = U,X2 = UH,X3 = UHU
In general: Xi = [a1, . . . , ai ] first i letters of the pattern,
i = 0, . . . , `(p)− 1

I Transitions: δ(Xi , λ) = Xj if j is the maximal number such
that Xj is a suffix of Xiλ

When the automaton reads a path w , it ends in the state labeled
with the longest prefix of p that coincides with a suffix of w . The
automaton is completely determined by the step set and the
pattern.



Patterns and automata
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Adjacency matrix and kernel

Adjacency matrix:

A = A(u) =


1 + u−1 u 0 0
u−1 u 1 0

1 + u−1 0 0 u
0 u 1 0

 .

In each row except the last one, all entries sum up to the step
polynomial P(u). The kernel of an automaton is defined as

K (t, u) := det(I − tA(u)).



Generating function for walks avoiding a pattern

Theorem
Let S be a simple set of steps and let p be a pattern with steps
from S. Then the bivariate generating function for walks avoiding
the pattern p is given by

W (t, u) =
(1, 0, . . . , 0) adj(I − tA)~1

K (t, u)
.



Generating function for walks avoiding a pattern
Proof. Step-by-step construction → obtain functional equation

(W1, . . . ,W`) = (1, 0, . . . , 0) + t(W1, . . . ,W`)A

Rewrite as

(W1, . . . ,W`)(I − tA) = (1, 0, . . . , 0)

(W1, . . . ,W`) = (1, 0, . . . , 0)
adj(I − tA)

det(I − tA)
.

W (t, u) is the sum of all the GFs Wα(t, u) over all states. Thus

W (t, u) =
∑̀
α=1

Wα = (W1, . . . ,W`)~1 =
(1, 0, . . . , 0) adj(I − tA)~1

det(I − tA)
.

Since K (t, u) was defined as det(I − tA) we obtain

W (t, u) =
(1, 0, . . . , 0) adj(I − tA)~1

K (t, u)
.



Generating function for meanders avoiding a pattern

Theorem
Let S be a simple set of steps and let p be a pattern with steps
from S. The bivariate generating function of meanders avoiding
the pattern p is

M(t, u) =
G (t, u)

ueK (t, u)

e∏
i=1

(u − ui (t)), (1)

where u1(t), . . . , ue(t) are the small roots of the kernel K (t, u) and
G (t, u) is a polynomial in u which will be characterized in the
proof.



1. Introduce catalytic variable (u) . . . done
2. Functional equation + rewrite in kernel form:

(M1, . . . ,M`) = (1, 0, . . . , 0) + t(M1, . . . ,M`)A

− t{u<0}((M1, . . . ,M`)A).

Rewriting

(M1, . . . ,M`)(I − tA) = (1, 0, . . . , 0)− t{u<0}((M1, . . . ,M`)A)︸ ︷︷ ︸
=:~F=(F1,...,F`)

.

(2)
The right hand side of 2 is a vector, its components are power
series in t and Laurent polynomials in u (their lowest degree is the
value of largest negative step).



Multiply (2) from the right by (I − tA)−1 = (adj(I−tA))·~1
det(I−tA) .

Furthermore, denote ~v := ~v(t, u) = (adj(I − tA)) · ~1. We obtain

M(t, u) =
(F1, . . . ,F`)~v

K (t, u)
. (3)

Write
Φ(t, u) := ue(F1(t, u), . . . ,F`(t, u)) ·~v (4)

where e is the number of small roots of K (t, u) and multiply 3
with ueK (t, u) to get rid of the denominator and negative
u-powers. We obtain

ueK (t, u)M(t, u) = Φ(t, u). (5)



3. Eliminate one of the unknowns:
want to make LHS of ueK (t, u)M(t, u) = Φ(t, u).vanish. This can
be done by plugging in u = ui (t) where ui is any small root of the
kernel. Thus, the equation

Φ(t, u) = 0

is satisfied by every small root of the kernel. Φ is a Laurent
polynomial since Fi and ~v. . . Laurent polynomials by construction.
Since Φ = ueM(t, u)K (t, u) and M is a power series in u and
ueK (t, u) is a polynomial in u, the function Φ(t, u) has no
negative powers of u ⇒ Φ polynomial in u.
ui (t) root of the polynomial equation Φ(t, u) = 0 ⇒

Φ(t, u) = G (t, u)
e∏

i=1

(u − ui (t)) (6)

for some G (t, u) which is a power series in t and a polynomial in u
(can be computed via comparing coefficients).



4. Extract generating function:
Substituting this into 3 we obtain

M(t, u) =
G (t, u)

ueK (t, u)

e∏
i=1

(u − ui (t)).

�

Bridges and excursions:

B(t) = W (t, 0)

E (t) = M(t, 0)



Extensions

Previously: several patterns studied individually (Deutsch (1998);
Sun (2002); Sapounakis, Tasoulas, Tsikouras (2006); Mansour,
Shattuck (2013), . . . ) Asinowski, Bacher, Banderier, Gittenberger
(2019): vectorial kernel method – unified approach that works for
any pattern (simple step set, one pattern) Extensions

I Asinowski, Bacher, Banderier, Gittenberger (2019): Number
of occurrences of a pattern can also be counted by VKM –
introduce new variable that marks completion of the pattern

I Asinowski, Banderier, R. (2020): Avoidance of several
patterns at once

I R. (2020): Avoidance of patterns in walks with longer steps

I other conditions that can be modeled by automata (height
restrictions, non-contiguous patterns, . . . )



Thank you!


	Introduction and definitions
	The kernel method

